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Abstract

The neural dynamics underpinning binary perceptual decisions and their transformation into actions are
well studied, but realvorld decisions typically offer more than two resge alternatives. How does
decisionrelated evidence accumulation dynamically influence multiple action representations in
humans? The heightened conservatism required in multiple compared to binary choice scenarios
suggests a mechanism which compendatesicreased uncertainty when multiple choices are present

by supressing baseline activity. Here, we tracked action representations using corticospinal excitability
during four and twechoice perceptual decisions, and modelled them using a sequentidingamp
framework. We found that the predictions made by leaky competing accumulator models in order to
accommodate multiple choices (i.e. reduced baseline activity to compensate increased uncertainty
were borne out by dynamic changes in human action reyetgams. This suggests a direct and
continuous influence of interacting evidence accumulators, each favouring a different decision

alternative, on downstream corticospinal excitability during complex choice.
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Making the rightdecisionquickly is a fundamental evolutionary objective, because being slow, or
being wrong, cabe fatal Most realworld decisions offer several possible responG@genthe
existence of capacity limitations ajaint speed and accuracgnstraints, how dbumansadaptas the
complexty of a decision scenario increa8es L F N I YHi€kDLB52)illustrateshow the number of
choice alternatives can profoundly affect the speed of respgauigbe neurocogitive basis of this
effect has only recently begun to élecidated Churchland & Ditterich, 2012)

Many researchers now agree that to make a decseoispry evidence from the environment is
accumulated over time unttlbecomes sufficient to triggerresponse. Ti& process haseen
formalised inmodelsinvolving sequential samplin@Brown & Heathcote, 2008; Forstmann, Ratcliff, &
Wagenmakers, 2016; Ratcliff & McKoon, 2008; Smith & Ratcliff, 2004; Usher & McClelland,;2001
but seeThura, BeauregarRacine, Fradet, & Cisek, 2012; Thura & Cisek, 208&)ch models make
the putative mechanisms underlyicliganges in behaviounore concreteFor example, the increase
reaction timdoundwhenresponse alternativesoliferate might result froma change irither the
guantity of evidence required to reach a decisioth@rate atvhich information accumulates
Behavioural assayselp distinguish these accoundsid some models, including thlysiologically
plausible leaky competgaccumulator (LCA) modglUsher & McClelland, 2001¢an account for
multi-alternative decisiomnaking invarioussettingsBogacz, Usher, Zhang, & McClelland, 2007;
Brown, Steyvers, & Wagenmakers, 2009; Ditterich, 2010; McMillen & Holmes, 2006; Tsetsos, Usher,
& Chater, 2010; Tsetsos, Ush& McClelland, 2011) However,only by marrying the quantitative
precision of sequential sampling models vagpropriateneurodynamic signalsanabiologically
compelling description of complex choice behavienorerge

Much of the neural evidence supporting sequential sampling models comes from experiments
usingbinarychoicesFor examplesinglecell recording in monkeysa method with sufficient temporal
resolution to track the decision variable, has shown that firing rates of neurons in the lateral
intraparietal area (LIP), but also the frontal eye field (FEF), and the superior colliculus (SC) display
accumulatiorto-bound characteristics itwo-choicesaccadic task&old & Shadlen, 2000, 2003;

Hanks & Summerfield, 2017; Paré & Wurtz, 2001; iRwin & Shadlen, 2002; Shadlen & Newsome,



2001) In humans, a number of electroencephalographic (EEG) signals have been suggested to reflect
the decision variable, but only in the context of binary decigidDogner, Siegel, kes, & Engel, 2009;
2T9&8RQQHOO 'RENUHH .HO O\ 6LHJHO (QJHO 'RQQHU
Despite the prevalence of the twboice task in research settings, satuelieshavealso
invedigatedthe neuraldynamicsof multi-alternativedecisionmaking at leastin norrthuman primates.
Seminal work byBasso and Wurtz (1997, 199&)owedhat actvity of monkey SC neurons decreased
with increasegossible targets in a saccadic midtiget taskThis finding was explored more
thoroughly and in the context of sequential sampling mode@Ghoychland, Kiani, and Shadlen (2008)
who presented two monkeys wiblothtwo and fourchoice random dot motiasisplays Both kinds of
decisionshowed the same stereotyped levelslBfactivity at the time of responsdowever firing
rates differecatthe beginning of the decisianaking processasfour-choice decisions showed
reducediring rates. In sequential sampling modedach as the LCAlower activityin a given
accumulatoatthe beginning of the @esionnecessitatelsrger excursios) i.e., more evidence will be
required tareach aespone boundarySuch heightenedonservasmin multiple compared to binary
choicescenarios can haterpreted as a mechanisvhich compensasfor increased uncertainty.
Decreased baseline activity has since been supported by a numivgjietell recording
studieg(Balan, Oristaglio, Schneider, & Gottlieb, 2008; Cohen, Heitz, Woodman, & Schall, 2009; Lee
& Keller, 2008) Does this result generalise to humans/or different sensorimotor pathwa&ysiven
that other plausible mechanisms accounting for changes in behaviour with the number of choice
alternatives can be formulated, via either sequential sampling models (e.g. changes in the rate of
evidence accumation) or alternative perspectivésg. + L F Mripinalinformationtheoretic account)
this question holsltheoretical importancéHoweverwe are not aware of any studies whingve
directly investigatedlynamicneural correlates ddinary vs.multi-choiceevidence accumulation in the
human bran.
Here, weaddresghis longstanding question lagsessinthe impact of multiple alternatives on
theneurodynamidecision variable in humans. Sinugh temporal resolutiodata isa prerequisitéo

tacklethis issugandmotorrelated EEGVEG signalshave limited utilityfor decisions with moréhan



two response alternativese useranscranial magnetic stimulation (TM®Y this purposé TMS
motor evoked potentials (MEPSs) can be usegéalout decisiorrelated influences the primary
motor cortex or adjacent premotor ar¢Bestmann et al., 2008; Bestmann & Krakauer, 2015; Hadar,
Makris, & Yarrow, 2012; Hadar, Rowe, Di Costa, Jones, & Yarrow62RBiers, Fernando, &
Tomkins, 1997)Whena decision requiresnammediatemotor response, motor preparation occurs
continuouslythroughout the decisiemaking proces&e Lange, Rahnev, Domme& Lau, 2013;
Duque, Lew, Mazzocchio, Olivier, & Ivry, 201Gluth, Rieskamp, & Buichel, 2018Bladar et al., 2012;
Michelet Duncan, & Cisek?2010; Tsetsos, Pfeffer, Jentgens, & Donner, 2015; Thura & Cisek,.2016)
Thereforethe corticospinaéxcitability thatMEPsreflectcan be used as a correlate of the decision
variable and compared directly to the predictions of accumulator models such as the LCA

By mapping two separate responses, each recruiting a different muscle, to each hand and
measuring the activity of both muscles in the hand contralateral to brain stimulation, we were able to
record MEPs associated with each response separately. Althogacsll recording studies of
decisionmaking(e.g. Basso & Wurtz, 1997, 1998; Churchland et al., 20888 typically targeted
regions that are anatomically remote from those iogeted using MEPs, their functional roles for the
generation of saccadesaymirror those of the corticospinal tract for manual actidde.therefore
hypothesised that if changes in corticospinal excitability are driven by accumutationnd
dynamics agncapsulated in the LCA model, MEP changes associated with each respomke woul
displaytypical characteristics of a decision variabl SHFLILFDOO\ ZH H[S HipwaieG W K]
to increase with evidence strength, and their amplitudes to reach a stereotyped level at the time of
responséHadar et al., 20165pieser, Kohl, Forster, Bestmann & Yarrow, 201&portantly, beyond
these typical accumulatieto-bound dynamics, walsopredicteda reduced amplitude (for potential
responses) when participants prepared a¢boice compared to a twahoice decision, as suggested
by previously observeldwer baseline neural firing ratés nonhuman primatedNote that this was in

no sense inevitablasthere are fundamental differences between sioglerecordings of oculomotor

! Other physiological signals may also be appropriate for this purpose, for example EMG (Servant, White, Montagnini, &
Burle, 2015, 2016) or the gain of reflex responses (Selen, Shadlen, & Wolpert, 2012). Our choice in part reflects®ur relativ
expertise with these techniques, but also the greater likelihood thatetited signals are contaminated by factors
unrelaed to decision formation as we move further along the sensorimotor pipeline towards the observable action.

5



neuronsn monkeysandthe MEP signals reported here. For examplhile simultaneous movements

of both hand are possible, the oculomotor system is restricted to a movement in a single direction at
any given time, which may lead to differences in deciseated neural dynamick addressing #n

possible generalisation of this result from the monkey oculansgsiem to the human corticospinal

tract we were able, for the first timeg track the decision variable during human malternative
decisionmaking We thusGLVWLQJXLVK WKHRUHWLFDO DFFRXQWN RI +LF

demonstratinglecreased levels of baseline activity wathincreased number of alternatives.

Methods

Participants

We recruited 13 participants (five males) with a meancd@é.23 SD =7.67). Becausmany TMS
trials mustbe discarded for unavoidable reasons (see EMG Processing beld¥gdaf.et al., 208)
each participantompletedbetween two and four sessions (each lastif3diours) and completed on
average 4166 trials.drticipants were paid £8 per hour. All procedures were approved by the City,

University ofLondon Psychology Department Ethicemmittee.

Stimuli, Designand Procedure

Participants completed a colediscrimination task. In each trial, an array of coloured pixels appeared.
Arraysconsisted of four different colours (green (RGB [0 0.6 0]), R@H [0.8 0 0]), yellow (RGB
[0.92 0.74 0}, blue (RGB [0.12 0.12 0.61])) articipantswere instructed tondicate which colour was
most prevalenas quickly and as accurately as possibgng the corresponding one of four response
buttons (se€&igure 1)

Stimuli were generated using Matl@the Mathworks, Natickl).S.A.)and thePsychtoolbox
extension(Brainard, 1997; Kleiner et al., 2007; Pelli, 1994)d presented anDisplay++ LCD
monitor (Cambridge Research Systems, Ltd., Rochester, UK, display size: 41 cm x 30 cm) operating at
a refresh rate of 100 Hz and a resolution of 1240 x 786 pixels. Particgaaaypgproximately 100 cm
from the screenlhe stimulus arraysubtended 6 x 6 degrees of visual angeehecoloured pixel

spanned 2 x 2 screen pixels, resulting in an array of 145 x 145 colouetsl pix
6



Participants held two digital response buttons interfaced via a 16 bit A/D card (National
Instruments Xseries PCl&6323, sampling rate 100,000 Hm)each hand, one betwettrumb and

index finger (pinch), and one agaitis¢ palm, attached to a plastic cylinder (grdsaclar et al., 2012)

Pinching contracted the first dorsal interosseous (FDI) muscle, while grasping the cylinder activated the

abductor digiti minimi (ADM) muscle. Each colour was mapped to one of the four response buttons.
The coloufrespons mapping was randomised across participants.

Trials consisted of a cue (500 ms), a coloured stimulus array (2000 umtil response), and an
inter-stimulus interval (minimum 500 ms). The experiment contained both two andHoige trials
Additionally, as a positive control, we crossed a manipulation of difficulty with our manipulation of
number of choices in a 2x2 desi@ifficulty negatively affecteccumulation ratéMulder, van
Maanen, & Forstmann, 2014; Ratcliff & Rouder, 1998; Teodorescu & Usher, 20d8)is effecthas
been demonstrated in MEP signals for{ebmice taskg¢Hadar et al., 208; Spieser et al., 20)8To
manipulate tasKifficulty, the percentage of pixels of the dominant colour varied between 33% (easy)
and 30% (hard). The remaining colours each took up 22% and 23% of theeapactively. The cue
at the beginning of each trial informed participants whether a given trial was a two orcadoe trial
by presenting either two or four coloured squares representing the possible choices.

One third of trials were fouchoice,one third weretwoF KRLFH pZLWKLQY KDQGV

possible responses were on one hand (left pithett grasp, right pinch right grasp), and one third of

L

trials weretweFKRLFH PEHWZHHQY KDQGV L H KRPRORJRX¥&(l&ftHV SR C

pinch- right pinch, left grasp right grasp).Trial orderwas randomised. Notbeatthe difference

betweertwo and fourchoice trials lay solely in the instructions conveyed by the#the stimulus

array and the percentage of the four colours did not change. In the first session, participants completed

150 practice trials, to familiarise themselves with the task. Particiferisompleted between five
and six experimental blocks perssion, with each block consisting of 168 trials (plus additional trials

to regulate TMS frequency; see bejow



Stimulation and Recording

Muscle activity was recorded using surface electromyography (EMG), sampled at 1000 Hz via a 13 bit
A/D Biometrics Daalink system (version 7.5, Biometrics Ltd., Ladysmith, VA, U.S.A., 2008) and
bandpass filtered (20 to 450 Hz). Surface Ag/AgCI electrodes (22 mm x 28 mm, part No. SX230FW,
Biometrics Ltd., Ladysmith, VA) were placed above fing dorsal interosseous (Fband abductor
digiti minimi (ADM) of each hand. Reference electrodes were plappdoximately 2 cm froreach of
the four active electrodes. The EMG signals of the right ADM and FDI were also passed to speakers
placed on the left and right of the panpiant respectively, with noise informing participants that their
muscles were not fully relaxed between responses.

Single-pulse TMS was applied using a Magstim Rapiphasic stimulator (The Magstim Co.
Ltd., Whitland, UK). To induce motor evoked potergi@lEP) in both the ADM and the FDI of the
right hand, a 76nm figureof-eight colil (external casing diameter approximately 90 mm for each loop)
was positioned on the scalp over the left motor cortex. The exact location and stimulation intensity was
adjused for each articipant individually andet at approximately 110% of the resting motor threshold
(RMT). TheRMT was defined as the minimal intensity to elicit an MEP with a ffegdeak amplitude
R1 DSSUR|[L P DiWsB%af stim@ations on both the FDI and ADM of the right hand. TMS
position wasontinuoushtracked and maintained using a nensavigation syst@ (Visor 2, ANT
Neuro, The Netherlands).

TMS pulses were planned in 57% of trials from each condifiorensure a good distribution of
TMS pulses during a baseline interval and over the course of the reaction time, TMS trials were divided
into four equal frequent time bins betweeB00and 700 ms relative to the stimulus onset (i.e.
between 300 and 1200 ms relative to cue onset). Within a given bin, the exact stimulation time was
drawn randomly for each trial. Since the experiment followsithgle pulseTMS protocol,pulses were
required to occur at a maximal frequency of 0.2 Hz. If, lyncle, a planned intgulse interval(lPI)
was less thaB000 mstiming was adjustedror IPIsof 4-5000 ms, the imr-trial interval was
increased, decreasitige puke frequency t0.2 Hz For IPIsless than 4000 ms, the planned trial was

replaced with the next planned stimulatioee trial. If there were no stimulatidree trials left,
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random stimulatiofiree trials were generat@a orderto increase thé1. On average, his method
added 434 trials per sessigrelding an average 1354 trials per session. Planned pulses were not

delivered if a response had already been detected.
EMG Processing

Pre-processingAll EMG processing was performed in Matl@the Mathworks, NatickJ.S.A.). To
remove potential differences in movement time (between right and left hands, or pinch and grasp
responses), analyses were conducted based on EMG RTs, i.e., the time between stimulus and
responding EMG onset. Firshe TeageKaiser energy operator (TKEO) wappliedto detect the
onset time of muscle activity associated with each resgangeAruin, 2005; Li, Zhou, & Aruin,
2007; Solnik, Rider, Steinweg, Devita, & Hortobagyi, 20Ie discrete TKEOQYor a given EMG
valuex of the sampl& was defined as:

85T:J;?L T:J; FT.JES;T:JF s; (1)
A threshold ©) identifiedthe onset of muscle activity:

6L 4ED8 (2)

With and lrepresenting thbaselinemean and standard deviatioB@0 to 200 ms relative to cue
onset), andh set to 3. Additionally, all trials were visually inspected and the EMG onset time was
adjusted manually if necessary. Visual inspection provided no information about the experimental
condition of a given trial. Trials with muscular artifacts, no deteet&MG onset, or partial responses
on more than one channel were excluded (6.41% of all rectiidi). We further excludettials with
EXWWRQ 57V RI » PV RU” PV RU (0* 57V RI » PV RU”
trials).

In TMS trials, MEP amplitudes in both channels (FDI and ADM) of the right hand were defined
as themaximum minugheminimum EMG valuefrom 10-40 msafter stimulation Trials with
musculampre-activation EMG > 9in the 200 meperiodprecedingstimulaion) were excluded
(4.51% of all trials), as wettgials with no visible MEP or in which MEPamplitudewas uncertaiue
WR DPSOLILHU VDWXUDWLRQ RI DOO WULDOV 7ULDOV ZF

preceded the planned TMS (4.3@#all trials).



In total, 17.53% o&ll recordedrials (including 35.38% of TMS trials) were discardedth a
similar proportion oftials deleted across conditions. After thesegrecessing step$4,669 usable
trials remained (includind.3,588TMS trialg. MEP amplitudes were thenscored per muscle, session,
and participant (but regardless of experimental condition), to normalise their magnitudes. féinally,
all analyses except our baseline comparison (see béWiHs amplitude associatedth incorrect

trials were discarded, leading to a total of 11,590 remaining TMS trials.

Re-categorisationThe FDI and ADMchannels were reclassified into one of four categories. MEPs

from musclesssociated with the correct resporsé(lUH FODVVHBFDW pZRLOH 0¢3V U]
responding muscldermed WKUHH GLIITHUHQW HUURU FDWHJRULHV up$GML
M2 S SRVL\Wdtg thafdr MEP datathese labelgenerallyrefer to all potential responses within a

gven GHFLVLRQ QRW RYHUW HUURUV L H p2SSRYeintotrect) e U U
it been made)) LI XUH LOOXVWUDWHY WKHVH PDSSLQJVY 7KH UHVSR
corresponding to the némmologous movementonthek RUUHFW KDQG ZDV ODEHOOF
:H XVHG p$G M D oHrésponsesWRith wére incorrect but on the correct hand irchamice

trials, or responses which were cued but incorrect indimace trials. The remaining responses were
labelled u$ G M D F H Q Woté bawBvdr, tfiagtimulation proviédonly two (right-hand)MEPsper

trial which were sorted into two of the four categories.

Collation and Smoothingzor each correct/erroategory and each conditioMEPs recorded in
correct trials were pooled across participants and sesSi@ithereforenormalisedstimulation times
for each session and participant, expresthemas a percentagd median EMG RT (on stimulatien
free trials). Pooled MEP amplitudeke sorted in time and aligned to both the stimulus and the
response.

To generateontinuous signal MEP amplitudes were then smoothed gigaussian kernel:

é:R L AéB- WB@Q} (3)
5.9

g

P
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WhereN is the number of MEPSs, each being associated with a magnitadd a time;. The
smoothed signal was calculated in time steps of 1% median EMG RT, using a smoothing kernel with a

full -width half maximum of 5% median EMG RT.

Statistical AnalysisWe reprt two-tailed p values for all pairwise tesBifferences between
conditions for behavioural data (i.e. RTs, EMG RTs and errors) were inferred using ANOVAs and
generalized linear mixed models (GLMMs) with logistic link functions, respectively. GLMMs were
implemented using the Matlab fitglme command, and all effects of interest (e.g. difficulty, number of
response alternatives and their interaction) were nested within participants and sessions and included &
random effects in the model specifications.

For TMS data, based on previous research inmaman primateéBalan et al., 2008;
Churchland et al., 2008; Cohen et al., 2008) expected reducdxhselindViEP amplitudes when
participantschosebetween four compared to two alternatives. To test this, we took (for each
participant) the amplitude of altstored MEPs recorded during the -@tienulus interval and
associated with a cued response (i.e., for-tdwice trials, all MEPs during the [gdisie-period, while
fortwo- FKRLFH wUuLDOV RQO\ 0(3V FDWHJRULVHG DV p&RUUHFWY
and squareoot transformation of these scores to achieve normality, the difference across conditions
was tested using a linear mkenodel (with random effects for participant) using the Matlab fitime
command (which, when compared to a traditiortakt performed on averages derived from multiple
trials, better utilises information from all contributing scor@slis approach was aspplied to an
unforeseen prediction emerging from our modelling, regarding differentate accumulation profiles
between opposite ermand otheri(e. adjacentcategories of error

We also expectethe MEP signato be affected byaskdifficulty, with steeper accumulation
IRU pHani\WDUGY WULDOV 8QGHU VHTXHQWLDO VDPSOLQJ PRGI
differencein their accumulation rates is a key determinant of behaviour. Hence we focussed on trials in
which two MEPs from a single hand could be used to construct a signal measuring the difference
EHWZHHQ p&RUUHFWY DQG p%Giyhal Whichas (revidesly befnShowsti® Q V H V

display differences between difficulty conditiofkéadar et al., 2016}or both fourchoice and two
11



choicewithin-hand trials, we fitted a straight line to the MEP signals derived tinisrdifference We

term the gradient of this line a relativized slope. We did thisdd/ K ptHDV\Y] DQ GenKDUGY W
VXEWUDFWHG WKH UHODWLYL]HG VORSH IRU pKDUGY WULDOV
estimates were made for stimullegked data, between 50% and 90% median EMG RT, and response
locked data, betweeH0% and-10% median EMG RT. We used nrparametric permutation tests

ZLWK LWHUDWLRQV WR JHQHUDWH QHZ VHWYV RI UHVDPSOH
replacement) and calculated the relativized slope difference between them. In each teginghe o
difference was compared to the resulting null distribution of differences. Note that because these
permutatiortests were performed on a collated set of trials from all particighetstatistical

generalisation is to a sampling distribution lahsa all possible trials from oyarticular set of

participantsrather than one based on all possible participants

Modeling

We used the LCA model to fit the behavioural dataher & McClelland, 201). The LCA isa race
accumulator model arttierefore easily extended taone than two alternatives.cBumulation traces
are defined by an accumulation ratelusnoise, and race towards a decision boundaryhe LCA is
designed to explain the acculation process in a more neurophysiologically plausible way than other
models within this framework. To this entlincludes a leakage paramekeas well as a parameter
for mutual inhibition between accumulators. Thus, in a binary decision invohéngctumulators
andn, the change in activation in accumulatois given by:

@IR R FGT, FUT, EO0:ré&®; (4)
Wherev is the input into the accumulator adld  2Lis normaly distribuied noisewith zeromean ad
a standard deviatiod Additionally, the accumulation process is forced to remain positive:

T,:PEs; L efSral :P E@; (5)

RT is made up of the time required to redfleh boundary, and a nordecision timeTlg,, which

accounts for sensory and motor processes beforafterdhe decision process.

12



Model Fit: We tested three LCA modelsge Table 11 In Model 1, we extended the model to include
four accumulators. In a fowghoice trial, the accumulation rate of the correct accumulator was given by
Veorrecs While accumulation rate for all other accumulators was givenRyec. The starting pointy,-
choiceWas set to 0, and along with the thresh®dlaind the leakagle equal across accumulatorsvd@
parameters aq;and opp captured inhibition betaen accumulatorgnhibition parameterseflectedthe
anatomical adjacency of responses. Specificadlydescribes the inhibition induced by the evidence
associated with the opposite response and opposite hand relative to a given accumulator, while
inhibition between all other accumulators is given Ry(seeFigure2). This means that the change in
accumulation for each accumulator is given by:
@Ja220®Ria2a00ClasaobbxPxwanF bxbxwmaa F Baaleamad 0:r &%,
@ Tvwan® RewmanF ChxwaaF buTasacobbxTeamasr BaabxaaaE 0:r&°;
@Tw2aR RxwaaF ChxwmaaF b FnazacfolbvleaamaaF LaalbxaasE 0:r&®;
O@Fza.aaP Ramad Cleamad WbabxmanF buFxwmaa F Baalnazagh0:ré®;
(6)

In two-choice decisions the same feagcumulator structuneas used with the following
exceptions. Based on previously demonstrated baseline diffef@ge€hurchland et al., 20Q8)
DFFXPXODWRUYV DVVRFLDWHG ZLWK WKH FXH Ghdgahat 8§ RapividdV p &
point defined bywochoicecues ZKLOH WKH VWDUWLQJ SRLQW RI WKH RWKHU
DQG u2S SR Vi WhbkelnbldRIISEE to 0. The accumulation rate of the two accumulators
associated with the nef XHG UHVSRQVHV u$GMDFHQW, (MadJast/setftoD, & U2 S
that only noise was accumulated.

Lastly, the drift rateScorrect aNdVincorrectvVaried across difficulty levelgjeldingin total 10 free
parametersvbasycorrect Veasyincorrecs Vhardcorrecs Vhardrincorrect Zwo-choicecued  Nadj opp L Ter). The
boundary parameté&wasset to 1 as a scaling parametdodel 1 is schematized Figure2.

By setting the accumulation rate of the rmred accumulators to 0 in Model 1, we assumed
earlyattentional selection, gating the signal at a sensory level. Since this is speculative, we also tested :

model without this assumption. Model 2 is identical to Modeixteptthat accumulation rates of

13



uncued accumulatorsintwb KRLFH FRQGLMQW@VURIVGMDIFQG pH2SSRVLWH (
to 0, but instead to the samgorrect DV HSGMDFHQW (is thBddhafjthetsiEr®) FOHrew/
parameters as Model 1.

Finally, we also tested a modeith no baselinedifference between twohoice and fouchoice
conditions, but which introduced a difference in accumulation rate insteade Model 3s identical
to Model 1 with the exception that the starting point is set to O for all conditions, and thatdige
and fourchoice conditions have separate correct and incorrect drift Xig%r-correct Veasyfour-incorrect
Veasytwo-correct Veasytwo-incorrect Vhard-four-correct Vhard-four-incorrecs Vhard-wo-correct Vhardtwoincorrecy)- Like Model 1,
accumulation rates in uncued accumulators were set to 0. This resulted in a total of 13 free parameters
for Model 3 {easyfour-correct Veasyfour-incorrect Veasytwo-correct Veasytwo-incorrect Vhard-four-correct Vhard-four-incorrect

2
Vhard-two-correct Vhardtwo-incorrect I\Iadj opp J-Ter)-

Note that we did not test a model with varying decision boundaries, a variation which is
commonlyused(e.g. Brown & Heathcote, 2008 fact, £quential sampling modedse unable to
distinguish between variations $tarting pointsvariations in boundaries, or a combination of both
based on model fits alorfBogacz, Wagennkars, Forstmann, & Nieuwenhuis, 201Blencewe tested
only one of these accounts and, in accordance with suggestions made in the |{{i@edduret al.,
2008; Basso & Wurtz, 1997, 1998; Churchland et al., 2G0®)se a variation in baseline (WM& 1/2)
to model differences in accumulation excursb@iween binary and multiple choice alternatives.

To fit each modelnormalised EMG RTs from stimulatiefnee trials were pooled across
participants to estimate the model parameters at the groupAetaghl of 20,000 simulated EMG RTs
were compared to the empirical datang Quantile Maximum Probability Estimati@ideathcote,
Brown, & Mewhort, 2002and parameter values were adjusted using a differential evolutionttaigor
implemented in Matlab (The Mathworks, Natitk,S.A.; Price et al., 2005)

The three models were compaitgdcalculating two measures gbodnessf-fit which
considemothlikelihood andthe number ofree parameters, namely the Bayesian information criterion
(BIC, Schwarz, 1978xandthe Akaike information criterion (AlCAkaike, 1977) Thebest fitting

modelby these measures was then used to generate predicted accumulation profiles.
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Predicted Neurodynamic¥Ve simulated20,000 accumulation paths for each condition, based on best
fitting parameter values obtained for the model showing the best goedffst behavioural data.
Since wefitted usingEMG RTs rather than button RTs (itene to moveeffectors was not inctied)
we assumed that virtually all of the estimated-denision time described sensory processes. We
therefore started the accumulation profile after a sensory delay givien by

MEPs were simulateds the amplitude of a given accumulator at random MERd&® Just as
in the experimental data, only simulated MEPs that occurred before the decision boundary was reachec
were retained. Theming of simulated MEPs associated with correct deciswas then epressed
relative to both stimulus arrésponse, anMEPsweresmoothed to create simulated continuous MEP

signals.

Results

We exploral multi-alternative decisiomakingin humandy utilising MEP signals as a correlate of the
decision variableSince wewere a priori uncertaimbout howanatomicalproximity of responsewould
affect decisiormaking, our design initially distinguished two satnditions of twechoice trials,
depending on whether cued responses were contained within or spread between hands (Figure 1 b).
However, since we found no befaural or neural evidence to suggest that they should be treated
separately, we pooled twahoice data for most of our analyses.

Our approach tracked the evolution of preparation for each of up to four response alternatives,
ZKLFK ZH FDWHJIJRARMYHGSOM ERRQWHUURU 9 p$GMDFHQW (UUR
Methods and Figure 1)We used an LCA model with four accumulators categorised in the sante way
model behavioural dandpredict the accumulation profile odeh accumulator. Wwerethusable
not onlyto describeneurodynamiaecision variablewith four or tworesponse alternatives, but atso

directly compare téir profilesto model predictions
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Behaviourfor two-choice andour-choice decisionfllows + LFNV ODZ DC

reflects choice difficulty

Since the application of TMS pulses can alter response (Dagset al., 1989)only stimulationfree
trials remaining aftepre-processing oélectromyography (EMGyere usedor behavioural analyses
Figure 3shows mean behavioural results obtained in each condimrtheseanalyseswhich did not
rely on pooling of data across participafitdlike subsequerdnalyses of the decision variable), we
report raw, nomormalised response times KH HIITHFWV Rl p1XPEHU RI $OWHUQD\
correct EMG RTweretested witha 2x2 repeatedmeasures ANOVAEMG RTswere longer for
decisions with four alternativésan decisions with two alternativég1, 12) = 207.10p < .001, p2 =
.95. Also, harcer decisionswereslower than easy onds(1, 12) = 117.37p < .001, p2 = .91 There
was no significant interactidmetween the two facto(p = .68). The same analysis with button RT as
WLPH Rl UHVSRQVH OHG WR TXDOLWDWLYHO\ LGHQWEKEFDO UHV

PDLQ HIITHFW Rk QOL,interbcti@n \&ffeftp = .76). These results are consistent with
+LFNYV ODZ

Error dataare known toviolate the assumptions of ANOVAVe thereforensteadapplied
generalised linear mixeefffects model$or statistical inference, whiatevealedsignificantlylower
accuracyin four-choice compared tiwo-choicetrials, t(156) = 5.59p < .001, andn hardcompared to
easy trialst(156) = 9.68p < .001, with nointeraction p = .052).These results demonstrate that our
RT findings do not represent a speed/accuracy tradeoff: Participants were both slower and less accurat
in four-choice(and hard}rials. Additionally, we comparé the proportions oérrors arising irthe
differentpossibleerroneousesponseategoriesKigure 3b). In two-choice trialsthethreecategories
differed significantly from each othdf117) > 2.58p ZLWK PRVW Atijddei® UMW RQ WIK L
FDWHJRU\ (ppo&telridB. Vnibupchoice trials,u2SSRVLWHY HUURUV ZHUH OH
althoughR Q @djapent (UU R U Qpmosit€ WU eatedories differedignificantly, t(117) = 2.27p
= .03 These results indicate that baththecued responses were prioritised in talwice trials, and

thattaskirrelevant anatomical constrairdaffected action selectidn our experiment
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Corticospinal excitabilityreflects the accumulation of evidence amdeducedat

baselinewith four compaed to two choices

When analysing corticospinal excitabilityewenerallyfocused on trials in which the correct response
wasultimatelyexecutedas we had insufficient overt error trials to yield reliable sign&sioothed
signals were generatedingMEPSs from muscles associated with each potergsgdonse&ategory.
The resulting signalaredisplayed inFigure 4 locked to both the stimulusgper panelsand the
responsel¢wer panels Following an initialubiquitousnegative drift, in eachonditioncorticospinal
excitability associated with the correct respoimszeaseds expectedver the course of the decision to
reacha higher magnitude than all othotential responses Z K L O Gppditd{ LU iRdpdinse
showed the lowest amplie.

Contrary to our expectations, there iitte GLIITHUHQFH EHWZHHQ pHDV\Y VR
(dashed lines) trials in any of the conditions. There wereever, marked differences betwdeunr-
choice andwo-choice decisions. In the foghoice FR Q G LAlljade@(UW RU ¢ VDPH KDQG
differentaction UHODWLYH WR WKH U HAda8ddnd 0 U btHefkane buHombIQyGugu
action) traces followed a virtually identical profite corticospinal excitabilityln two-choice trials on
WKH RWKHU KDQG WKH WZR FAdldaeen{HVERQYHD U H&RHIIHIFDWY HXX
XQFXHG UHV SRiateht (WURBHUpmS WURUY WKURXJKRXWritd KH EH
(note that the cue onset is prior to the onset of MEP recording). Only towards the end of the decision,
presumablyhenthe (time-lagged)process driving selection of the correct response begins to feed
continuouslyinto motor cortex GRHV W K Hespdh&abictebisE A § steeper ragdative tothe
Adjacent (U U RrElspdihse

To test our hypothesis predictitmyver baseline activityn four compared tgcued)two-choice
decisions, weompared MEP amplitudes during the -atienulus interval-200 to 0 ms relative to the
stimulus onset; equivalent to 300 to 500 ms relative to cue oge@ppliedalinear mixedeffects
model, whichconfirmed our hypothesisevealing significantly reduced MEP amplitudes in four

compared to twazhoice trialst(5112) = 223, p = .05 (see Figure 4
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Additionally, we tested the differencenelativizedslopes (i.e. correct minus error
accumulation ra® between different difficulty levelfor both fourchoiceand twechoicewithin-
hand trials solid vs.dasled lines in Figure Yusing a permutation procedyseeMethods) This
analysis focussed on the final half of the RT period, when differential evidence accungéeen
potential responsasas observable in corticospinal excitability tracHse empiricalslope difference
betweenuHDV\Y DQG dil botelckedieJuppedidver 2.5% dheir bespoke null
distributions for either stimuludocked or responsklcked MEPswith eitherfour or two choices
Hence contrary to ouprediction ando previous evidencée.g.Spieser et al., 2018)here was no
easy/harglope differencep(> .05). To the extent that MEP signals do appear to diverge between easy
and hard conditions (e.g. late on during fabipice trials) this divergence is uninterpretable due to high
levels ofsampling noise.

However, o further explore this unexpected finding, we comparedlifference in relativized
slopes between fast and slow responbggerforning a median split on the data. We then used the
samepermutatiormethodpreviously applied ttest the difference in slegpHW ZHHQ pHDV\Y DQG
trialsto insteadcompare slopes of slow and fast trials. We found that slopes in fast trials were
significantly higher than slopes in slow trigfer both fourchoice and twechoicewithin-hand trials)
albeit onlyin the stinuluslockedsignal p < .05), showing thavhen responses were quicker,

corticospinal excitabilitytaccumulation was steeper.

BehaviouraModelling suggests a competitive accumulation process in which

changes in baselirie- ERXQGDU\ GLVWDQRW JHQHUD
To examine whetheaccumulatiorto-boundmodels carmprovide acompellingneurocognitive account
R1 +L F N,y fidthitled a sequential sampling model to the behavioural &at the overall
parameterisation of such a modsd|ectedria modelcomparisorprocedures, and the specific changes
observed intteresultingparameterscross experimental conditioqspvide insighs into the processes
that drive behavioural effectslere, we used the LCA modeUsher & McClelland, 2001 which lends

itself easilyto multiple-alternative decisiomaking
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We fitted thred.CA modelvarians to the EMG RT datall of which includd four
accumulators and assud#hataccumulatiorrate vared betweereasy and harttials. They also
assumed the existenceiohibition between accumulators, defined by two inhibition paraméersed
on the anatomical adjacency of respong@sr besffitting model(Model 1in Table 1, withl0free
parameters) additionally assuntbd same accumulation ratefour andtwo-choice trialsbut a
difference in starting poinHence this modenstantiates an account of Hi§kv O D Z Liaselifd. F K
to-boundary distance drives behavioural changes as the number of alternatives inéoedbes.
mode| accumulatiorrates ofuncued accumulators two-choice trials werset to zero

As seen in Table ¥arying model assumptions athera priori plausible ways (bgssuming
eithernongatdevidence accumulation in uncued accumulatdvéodel 2 10 parametersor
different accumulation rates in four and tafooice trialstModel 3 13 parametergjid not improve
the goodnessf-fit, as indexed byhe BayesiarandAkaike information criterigBIC/AIC). Because
these differentmode¥ DULDQWY FDSWXUH DOWHUQDWLYH DFFRXQWYV RI
different rate of evidence accumulation generates differences in RT and énsossigigests that
introducing multiple alternatives into a decisioraking process primarilgffects the baselin-
boundary distancef the accumulation processith a lower starting point four compared to two
choice decisiondNe thereforgorocee@édusingModel 1(schematised in Figure 2) for which
parameter estimates are displayedale 2.Notice how the starting point of accumulatigrarameter
2) is higher in twechoice cued conditions compared to other conditions. Thefitieg model also
suggests greater inhibitign) between opposite responses than between adjacent ones, and higher
accumulation rate@) in easy compared to difficult conditions.

The quality of the fit is shown iRigure 5(left: four-choice; right: twechoice; top: easy;
bottom: hard) The observed (ailes) and simulated (lines and crosses) normalised EMG RT
distributions are summarised by five quantile estim@tem left to right: 10%, 30%, 50%, 70%,

90%), and the EMG RT (&xis) and proportion of data-@xis) associated with each quantile are
dispayed. Both correct responses (thick lines) eegponses ieach error category are shqwvith the

latter on a magnified scale for clarifihe overlap between empirical and simulated quantiles indicates

19



a good overall model fitThe model successfulpyredicted the complete RT distributions of both
correct and erroneous responsise mearabsolutedifference between predicted and recorded EMG
RT quantiles was approximately 2.5%median EMG RT for correct responses, confirming that the

LCA was able taccount for botliour andtwo-choice decisions.

Neurodynamid_.CA model predictions capture both expected and unexpected

features of corticospinal excitability

To be compelling from a neuroscientific perspective, a model should describe both behavitsur and
neural substrateand be able to account for observed features of data that cannot easily be predicted
otherwise Hencewe went on to usthe estimated parametaterived from our behavioural modelling

to simulate average accumulation prcfiler eat condition.Figure4 displays the resulting stimulus

locked Upper panelsand responskcked (ower panelypredictions for each edlition and each
accumulatorNote, however, that the predictions have not been fitted tWE signaldata tthey
dependnsteadonfits to the behavioural data, with model selection and parameter estimates based only
on those data.

Importantqualitative similaities emergedetweerthe MEP signaand the model predictions
(Figure4). Like the MEP signal LCA p & R U bcelumldtion profiles increase dominateall other
DFFXPXODWRUV RYHU WKH FRXUVH RI W@E&ppositel UIMLIRIQ DLRF XORDXCO
showsthe lowest amplitude throughotiurthermoreijn four-choice conditions, the accunatibrs
DVVRFLDAM&NZIVWR Wi Adigcen6( WUWRU § GLVSOD\ D YLUWXDOO\ LG
two-FKRLFH FRQGLWLRQV WKH FXH &djaént (UPXFROD WR VYK REZ&IR KU HKR
DFWLYDWLRQ WKDQ W KAHjatenEQUHIR D FARRERESORWRRIYY RQWUDU\ \
initial hypothesedhut in complete agreement with our neural détere was no clear difference
EHWZHHQ pHDV\Y DQG pKDUGY SUHGLFWHG DFFXPXODWLRQ SU

Given this surprising failure to observe differeadetween easy and hard conditions, we
explored how large a difference between conditions is necessary to result in a visible slope difference.

We therefore simulated accumulation profiles based on varying differences between easy and hard
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accumulation rees. Bysimultaneouslyncreasing/decreasing the easy/hard accumulation rates
respectivelyby varying percentages, while keeping all other parameters the same, and visually
inspecting the resulting accumulation profiles, we found that slope differenee=ebetasy and hard
accumulation paths became visible whiegywerearound 2.5 times higher than the empirically
observed differenseThis increased difference in accumulation rates resulted in simulated reaction
time differences which were three timedage as those in the original simulation (e.g. in fcuoice
correct simulations, the original difference between easy and hard trials was .06 median EMG RT,
while the increased difference wa® median EMG RT).

Additionally, modellingsuggestedn ampitude difference between the accumulators associated
ZLWK u$GMDFHQW (UURU 9§ D@Sngs2B@euddettoivartsitie Brfil ofzthel F K
accumulation procesblence this modelling step led us to revisit our neural data with an additional
predidion. To quantify this effect in the neural data, we compared $4E#n the last quarteof the
EMG RT period by applyinga linearmixed-effects modelgeeStatistical Analysis). The results
FRQILUPHG WKH DPSOLWXGH GLIITHUHQFH EHW Znbbtfours GMD FHQ
(t(462) > 4.59p <.00] and twechoice {(881) > 4.089p <.007) conditions, furtheillustratingthe

similarity between pdicted accumulation profiles and MEP sigr{ake Figure 4)

Discussion

+ L F N 1 YHickPLB52)describes how RT increases with the number of stirm@sigonse alternatives,
and waagnitially believedto reflect the rate of information transmission in choice scenarios. However,
sequantial sampling modelkke the leaky compétg accumulator moddlJsher & McClelland, 201),
which have recently been extended to account for neurodynami@udatae a usefuhterpretative

lens through which to pinpoint the neurocognitive mechanisms that gesacatbehavioural
adaptationsSlower responses might arise from a de@daate of information accrual, or from a
requirement for stronger evidence in the face of greater intrinsic uncertaihibe with the latter
suggestion, gevious work has demonstratdthtmorechoice alternatives translate intéoaver
baselineactivity for the decision variablm areas such as macaque (Balan et al., 2008; Churchland
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et al., 2008)Here we testethe proposal that such deciskwalated changan neuronal activity
directly influenceaction representatioms the human braiat the level of motor cortex and the spinal
cord. To this end, participants completed a coeldiscrimination task with either four or two choices,
while we tracked the dynamicg corticospinal excitability forall four possible responsé#/e found
that during perceptual decisions, action representatiorcoat@uously updated from a baselleeel
that varies with task demands, as if dynamically shaped by a competitive éattoimprocesshat
tradesspeed for accuracy as uncertainty increases.

Behaviourally responses wergowerandlessaccuratewvith four-choices compared tawo-
choices (Brown et al., 2009; Cohen et al., 2009; Hick, 1992esefindings indicate that although the
stimulus did not change, and the manipulation was implemented only by the cue, the four vs two
FKRLFH PDQLSXODWLRQ KDG D VLJQLILRaRiGpWdditdosalyi=W RQ SDUW
categorizing error respors@ two-choice trialgevealed thathe cued but incorrect resporseeurred
more often than any other error, while in fainoice trialserrorscorresponding toesponsgsharing
some anatomical linkageith the correct responseere roughly equal in frequendyience, he
complexity of the choice scenario affedtnot onlyoverallresponse times aratcuracybut also the
specifics ofresponse selection amcorrect trials.

Because it is difficult to intuit the predictions of caepmulti-parameter models, we fitted a
sequential sampling model to the behavioural data in order to simulate evidence accumulation profiles
and then compare them to recorded MEP signals, choosing the LCA model for this pugheseX
McClelland, 2001)The LCA is an extension of a simple race accumulator model, but includes leakage
and inhibition parameters to model a more neurophysiologically plausible accumulation. This relatively
complex model was choséecause it is easily extended to any numlbehoice alternative€Smith &
Ratcliff, 2004; Usher & McClelland, 2001andhas been shown to adequately account for multi
alternative decisiomaking in a number of previous stud{@ogacz et al., 2007; Ditterich, 2010;

McMillen & Holmes, 2006; Tsetsos et al., 2010, 2014)particular, the inhibition between
accumulators appeaasnecessargodelcharacteristic in order to explain the behaviours associated

with the three different error categories utilised Heeethe occurrence dewer opposite than adjacent
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errors) By incorporating two inhibition parametexsrying thedegree of lateral inhibition between
responseshe model accouatifor behavioural data involvingpmplex anatomical linkages between
effectors.. KHWKHU WKH ORZHU YDOXH RI WKH LQKLELWLRQ SDUDP
reflects less latelanhibition, or a stronger cactivation of responses associated to contiguous stimuli,
remains to be elucidate@ther models exist with broadly similar architectures (e.g. maitkrnative
decision field theoryRoe, Busemeyer, & Townsend, 20@t)d are likely to provide similarly plausible
accounts of our data.

We tested three different LCA models. Importanthg besffitting model utilised a higher
starting point in twechoice than fouchoice trials This model outperformed a variant in wikic + LF N TV
law wasinsteadmplemented via changes in the rate of evidence act¢heskby confirming that RT
and accuracy differences between four anddwoice decisions could arise from reduced baseline
activity in multi-alternative choices\ote that ve did not test a model which varied in decision
boundary rather than starting point. Since these two accounts both affect the excursion of accumulation
theylead to mathematically equivaleRT predictionsandcould only be distinguished based on neural
results.Because pevious resultge.g.Churchland et al., 2008)aveshown a difference in baseline
activity, wefocussedon testing that account

Specifically, outrmodellingimplied thataction representatiorshouldevolvedynamically from
differing baselindevels during decisioamaking We assessed this by usii$/S to induce MEPs in
right-handmusclesat random time throughout the triaBy poolingdata across participants and
smoothing the resulting data points, eanstrucéd an MEP signal for eachesponseategory
separatelyfHadar et al., 208, Klein-Fligge & Bestmann, 2012; Kleidlligge, Nobbs, Pitcher, &
Bestmann, 203). Here,the response categories refer to potential responses within acgiveot
decision, rather than overterroré H p2SSRVLWH (UURUY UHIHUV WR D UHVS
incorrect, had it been madd) fact,the labousintensivenature of the MEP signads well as high
accuracy rates-(80%) meantwe wereunable to generate MEP signals associated with overt errors.

The resultingMIEP signal reflects corticospinal excitability and has previously been associated

with decisionrelated evidence accumulatig¢hladar et al., 2016; Spieser et al., 20I8pically, in
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humansneural correlates of decisionaking produce a single waveform per decisreflecting either
a difference or sum of the hypothetical underlying accumulétogsde Lange et al., 2013; Donner et
DO .HO O\ 21 &RiQnv@vdrOoneretracking each of the four potential responses
allowed us teestimatesach ofthefour associatedccumulators and thereby provide a richer insight
into the decision process than a single summary signal could provide.

To our knowledge, this is the firdescription ofatemporally precis@eural correlate of the
decision variable for muHalternativevs binarydecisionmaking in humang-or comparisongstimated
model parameters were used to simulate accumulation profitks the LCA modeCrucially, the
resulting profiles were qualitatively similar to those of the measured MEP signals, desfats that
they were predicted frorrategorically distinc{behavioural) datdn line with our hypotheses, we
founda significant baseline difference betwdeuar and (cued) twahoice corticospinal excitability.
SubsequentyW KH p&RUUHFW fased 3hraughDut tHe Lri@l tibeaked at the response,
clearly separatdfrom profiles associated wittrroneousesponsesAlthough the clear baseline
difference suggests that this is the main mechadrsnng changes in R/it is possible that
accumulation excursion is additionally enhanced bylatleboundary variatiorwhich our method,
which inevitably yields less usable MERsd thus less certainty towards the end of the tras$ less
well suited to detect

We alsoobserved a difference in the trajectories ofghtential but erroneougsponses
betweerfour andtwo-choice decisiongust as our behavioural modelling predictetefile was no
observable difference betwepatentialerrors made with the same hand amase made with the
homologous effectdout the wrong hanah four-choice trials, or, in fact, any of the profiles during the
first half of the trial However there was a clear separation in talwice trials, whereuedresponses
showed a higher amplitude thancuedresponseghroughouthetrial. This enhancedctivation of the
erroneous but cued response affected behaviour, specitivaflgquenciesvith which different
categorie®f errorwere observedsimilarly, in four-choice trialsresponses anatomically linked to the
correctalternativeshowed the greatest activationthe second half of the RT perioalith a corollary

effect on error rates.
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The results described so far were broadly as hypothgsitbedugh we did not make a specific
apriori hypothesis regarding our different categories of ertdovever, nodel predictions also
converged witlthe MEP signain surprising waysContrary to our prediction,dth showedittle
difference between easyd hard accumulation profiléiseyond that attributable to sampling noise)
Previous research has shovwattmanipulations of difficultyypically affect evidence accumulation
(Ho et al.,2009; Ratcliff & McKoon, 2008)as well as associated neural signaléi O O\ 2&RQQHC
2013; Roitman & Shadlen, 2002ncluding smoothed MEP signals like the ones used(ka@ar et
al., 2016, Spieser et al., 2018)oreover modelled @cumulation rates were free to vary in each
difficulty condition, and indeeduggested th&T differenceseflected such variatigrwvith higher
slopes for easier decisions. However, the difference did not produce distinct predicted accumulation
profiles. This surprising result removes a possible objection regarding the putative role of the MEP
signal as an acenulation signal, as, counterintuitively, it showed the very pattern predicted by the
model.This convergences likely explained bya relatively weak manipulation of difficultiyndeed,
even thougleasy decisions were significanthster the effectwvassmall < 50 mg, probably because
the dominant colour in the easy condition tooljugi 33% of the display, compared to 30%e hard
condition In fact, similar studies which reported marked slope differences between difficulty
conditionsalsoreported much larger reaction time differences (around 150 ms), translating into larger
differences in accumulation val@8pieser et al., 20183uggesting that larger differences in evidence
strength are needed to detect a visible difference in-opilchte A posthoc analysis€onfirmedthat
while thee was no slope difference between easy and hard waveforms, fast decisions were associated
with higher slopes than slow decisioas]east in the stimuld®cked signal, supportinipe role of the
MEP as a correlate of accumulation.

Our modellingconstrainedon-cued alternatives in twohoice trialgo havean accumulation
rate of zerpimplying that attentional mechanisms gate the evidence at a sensory level, before
accumulation occur@Nyart, Myers, & Summerfield, 2015)his model assumptigmmplemented only
because it provided the best behaviofitalvasagainsupported byur MEP resultsywhich displayed

little or no activation ofnon-cuedresponses in twohoice trials Note that this was found despite the
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fact that each stimulus contained all four colours, and the response options were ddtbynpire
stimulus cues alone. This finding is in line with previous research demamstrett adifferentneural
correlate of accumulation, tleentroparietal positivityonly displays a buildip if the sensory evidence
provided is directly relevant to the decisioB & RQQHOO HW DO

Despite the similarities we have outlingkdere were alssomemarked differences between
predicted and recorded accumulation sigrfate instancethe slow negative drift visible in all MEP
signals Figure 4 may reflect broad inhibition processes described during action preparation, resulting
in MEP suppression in both responding and-responding musclg$or a review see Duque,
Greenhouse, Labruna, & Ivry, 201 Natually, such norselective MEP modulation was not
reproduced in the model predictions. Additionally, the neural data seem to suggest not only a higher
baseline for cued responses but also a small simultaneous suppression of uncued responses, which me
be aninteresting addition to the mod@ furtherslight difference betweemeural dynamicandmodel
predictiong(and indeedatharacteristics commonly associated with accumulptiElates tahe reaching
of a stereotyped amplitude at the time of responkéch, although not directly tested here, is not
clearly visible in the neural data

At least two reasonsight underle these discrepancieBirstly, adirect comparison of the
model predictiorio the datas limited by the quality and nature of the MEBm®l. Whilea signal
based onlifferencesin MEP sizebetweeraresponding and neresponding muscle Igkely to bea
relatively true reflection oflecision processes underlying response sele@MEP signal displaying
each response separatedgutilised herewill alsocontain norspecific influencessuch as moteievel
processesSecondlyjike any model, the LCA camt bestbe an approximation of the true decision
making procesdmportantly, samplingnodelsprovidea solid theoretical framewotk analyse and
interpret decisiofrelated neural activity. However, observed dissimilarities at the deaiaioable
levelillustratehow models dscribea simplified decision process which does not always relate in a
straighforward manner with the underlying neural dynam{aircell & Palmeri, 2017)

In summary, we have demonstrated that ralternative decisiomaking in humans can be

accounted for by sequential sampling models, and, importantly, that smoothed MEPrsitgwiiag
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corticospinal excitabilityprovide a downstream reflection of thecamulaion process. Under a
sequentiabampling modelling framework, higher RTs with increasing numbers of alternatindse
explained by a greater distance between the starting point of accumulation and the response boundary.
This affects the signdb-noise ratio, because larger baseliodound distances require more evidence
to be accumulate@Churchland & Ditterich, 2012; Churchland et al., 2008her & McClelland,

2007). In four-choice decisions, which increase uncertainty relative tectvace decisions, an

increase in the baselifte-bound distance would compensate for this uncertainty at the expense of
reaction time. Here, we havalidated this prediction ihuman @cisionmakingactuated via the
corticospinal tragtshowingfor the first time that the number of choice alternatives in a deeision
making task affects the baselia€tivity of neural accumulatigiust as sequential sampling models
predict Furthermorewe have shown thMEP signals can be used to track the evolution of
preparation for each of four responses separately, giving insight into each of the four associated

accumulators of aegjuential sampling model.
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Tables

Tablel: Model comparisonBIC, AIC and likelihoodvalues for each model. Model 1 has the lowest

(best) BIC and AIC values (best BIC and AIC values in bold).

Number of o
Model AlC BIC Likelihood Parameters
parameters
Veasycorrecta Veasyincorrect:
Model
10 1411600 14116& '701790 Vhard-correct Vhard-incorrect
1
Zywo-choicecued Nadj opp 2;l-Ter
Veasycorrecb Veasyincorrect:
Model
10 142,172 142256 '71,076 Vhard-correct Vhard-incorrect
2
Zywo-choicecued Nadj opp 2;l-Ter
Veasyfour—correct: Veasyfour—incorrecb
Veasytwocorrect: Veasytwoincorrect;
Model
13 144859 144968 '721410 Vhard-four-correct Vhard-four-incorrect
3

Vhardtwo-correct Vhard-two-incorrect

2
N adj opp J— Ter
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Table2: Estimated parameter values for the chosen model (Modebdt® that the response boundary

A was set to 1 as a scaling parameter, and that the stpdingz was set to for four-choice trials.

Model 1: LCA Parameters

LeakageK) 0.000029
Boundary A) 1
Non-decision time Te) 0.2994
Diffusion constant () 0.4863
adi 0.000022
,QKLELWLRQ
opp 0.0408
two-choice (cued) 0.2355
Starting point (z)

four-choice/ twachoice (uncued) 0
correct 1.3199

easy
Accumulation rate incorrect 0.2321
(v) correct 1.1781

hard
incorrect 0.3413
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Figure Captions

Figurel:

Time

Fixation Dot
(500 ms)
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Trial Procedurea) colour discrimination task; participants have to indicate which of theygme

colours is the most prevalent on the colour array. Left-étwice trial: all possible cues were

displayed. Right: twechoice trial: only two of the possible cues wenewsn. b) all possible twohoice

FRPELQDWLRQV ,Q PZLWKLQY WULDOV ERWK SRVVLEOH UHVS

trials, the two possible responses were on different hands but using the same response (pinch/grasp). ¢

each cue/colour veaassociated with a specific response: the top right cue (here: green) was associated

with aright KDQG PSLQFKY UHVSRQVH WKH W-KD QG IMS EGFKKHUMSR
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bottom right cue (here: yellow) with arigid D Q G J U D ¥,%fid thelbogdmQelt cue (here: red)
withaleft KDQG pJUDVSY U-HSpBri&rivadpingRvere Mahbdomised across participants

while the cue locatiomesponse mapping remained the same. d) each hand performed pinch and grasp
responses, recruitinge first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles
respectively. Muscles associated with correct responses are shown in green, while others are displayec
in grey (see c & e). MEPs were only recorded from rlgdmid muscles (indicadl by dark red border).

e) response categorisation. In each trial, rlggrid MEPs are associated with two of the response
categories. Activation of all categories is probed across trials, as the position of the correct response
varied randomly. Top pandbur-choice trial in which the stimulus array (not shown) instructs a right
JubvS UHVSRQVH 7KH LQFRUUHFW UHVSRQVH RQ WKH VDPH K
UHVSRQVHY RQ WKH RWKHU KDQG DUH ODEHOréesddasg)&@&MDFHQW
H2S SRVLWH -hohbRdgodis taxBr@ct response). Middle panel: - TwK RLFH pZLWKLQY W
involving a choice between leffiand responses. If the left pinch response is correct, the incorrect but
cued response (here leftgrasp) 8®VVHG DV p$GMDFHQW (UURU T WKH UHYV
RQH RQ WKH RWKHU KDQG LV ODEHOOHG p$GMDFHQW (UURU
(UURUY %RWW-FKBD-HHOE WERHHQYT WULDO LQYWR@iYchQJ VHOHF
UHVSRQVHV +HUH WKH ULJKW SLQFK LV FRUUHFW DQG WKH O
(UURU T 7KH LQFRUUHFW UHVSRQVH RQ WKH VDPH KDQG DV \

and the anatomically opposite resp&/ H LV FDOOHG p2SSRVLWH (UURUY
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Figure 2:

a) Four-choice decisions b) Two-choice decisions
Corrrect Adjcent Error 2 Corrrect Adjcent Error 2
....................... A [ . Y .| S . |
Vcorrccl Bad BadJ
*-9 incorrect ®-0,
o o o v < v=0
1l I g correct g
5 2 g g
N N 7 3
T T N - N
L4 7 \k @ ,. ® 7 \k ® ! \k [ ] ,. ® I \k
Iﬁac] Voo N |Badj s 1B N By v
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Adjacent Error 1 @ Bepp\. Opposite Error Adjacent Error 1 ® Bop? Opposite Error
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3 Vincorrect
M“g T N‘g
! \k

-
~

LCA model a) Fourchoice decisions. Four accumulators race towards boundary A (fixed to 1). Each
accumulator starts at a starting poigt-zZnoice (fixed to 0). The accumulator associated with the correct
alternative increases at a mean ratgwwhile other accumulators increase at mean radgraé:

Accumulators are affected by leakage over time (k, black, dashed). Two inhibition paratetters

WKH LQKLELWLRQ EHWZHHQ DFFXPXODWRUV pRdnSIBgUdus HY DFF
UHVSRQVHV RQ GLIIHUHQW KDQGV L @Niduple\WasHeddl¥ Kll (A (He, Z L W
all adjacent) accumulators inhibit eactko U ZLW K D );\grey;idashablk bR Twohoice
GHFLVLRQV +HUH WKH WZR XQFXHG UHVSRQVHV up$GMDFHQW
noise (mean rate of 0). The starting points of the accumulators associated with the two cueées,espons

defined by Zvo-choicecues are yoked as a (positively signed) free parameter.
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Figure 3:

a) RT & Accuracy

mmm Four-choice easy Four-choice hard
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Behavioural resultsa) mean reaction times (left) and accuracy (right) by condition. EMG RTs are
shown as filled bars; button RTs are indicated using dashed lines. b) Proportion of errors per error
category for fourchoice (left) and twachoice (right) trials. Error barsdicate 95% confidence

intervals. * indicates p < .05, ** indicates p < .001.
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Figure 4:
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MEP results and Model Predictions: Smoothed MEP signa3 (3 V L £Qubn@s) and LCA

S U H G L AWgdeRRedictiprfcolumns) for both stimulukcked (top a- €) and responskcked

(bottom f - j) signals.Shaded areas and error bars indicate 95% ClI, * p < .05, ** <.001.

a/f) MEP signals (left) and model predictions (right) associatiéga four-choice trialsln each panel,

signals fromeasy (solid lines) ankDUG GDVKHG OLQHV DV ZHOO DV HDFK F
HSGMDFHQW (UURU f $GMDFHQW p(UURU 9§ M2SSRVLWH (UUR
b/g) FourchoiceMEP signals (left) and model predictions (right) collapsed over easy and hagd trial

c/h) MEP signals (left) and model predictions (right) associated witichece trialsData are divided

as per panels a/f.

d/i) Two-choiceMEP signals (left) and model predictions (right) collapsed over easy and hard trials.

e) Top inset panel showamnplitude differences between fethoice (left bar) and cued twahoice

(right bar) baseline activity (note that, unlike the rest of the figure, this bar chart contained data from
both correct and incorrect trials)

j) Bottom inset panel shows amplituddferences betweeterminal u<$GMDFHQW (UURU T DQ(

(U U &atath both fourchoice (left) and twechoice (right) trials.
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Figure 5:

Model fit: quantiles estimated from behavioural data (circles) and LCA simulations (crosses and lines)
for four-choice(top) andtwo-choice(bottom) decisiondNote that incorrect trials (yellow/orange/red,
right-hand ordinate) are shown on a magnifiedescampared to correct trials (blue, ktind

ordinate).
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